Next Generation High Resolution and High Doppler Precision Optical and Near IR Spectrographs

Jian Ge, University of Florida

Team Members

Scott Powell, Bo Zhao, Bo Ma, Rui Li, Neil Thomas, Frank Varosi, Sidney Schofield, Hali Jakeman, Derek Myers, Ji Wang, Adam Fletcher, Jian Liu, Sirin Sithajan, Brian Lee, Nathan De Lee, Scott Fleming, Justin Crepp, Suvrath Mahadevan, Peng Jiang, Liang Chang, John Groot, Xiaoke Wan, Elliot Grafer, Kyle Owens, Dan Avnes, Jake Gittelmacher, Alexandria Moore, Maria-Ines van Olphen, Jordan Katz, Matthew Muterspaugh, Rory Barnes & Cullen Blake

Maui Double Star meeting, 2/10/2013
First Generation RV Instrument: Multi-object MARVELS at SDSS telescope with 60 Object RV Capability

MARVELS team in 2008

SDSS 2.5m wide field telescope

CT1 enclosure

Calibration box

Interface and Control System

Temperature control: ~10mK over 1 month

MARVELS has observed ~3300 FGK stars with V=7.6-12 in 2008-2012, with each observed ~27 times over 2 years
Some of the Published Substellar Companions in MARVELS

MARVES-1b, M=28.0M_J, P=5.9 days, e=0.0

MARVES-4b, M=40.0M_J, P=9.0 days, e=0.23
Ma, Ge, et al. 2012, AJ

MARVES-6b, M=31.7M_J, P=47.9 days, e=0.14

MARVES-5b, M=65.0M_J, P=90.3 days, e=0.44
MARVELS Starts to Fill its Designed Landscape

![Graph showing the distribution of planet candidates across different periods and minimum masses. The graph includes markers for MARVELS binaries, MARVELS BDs, and early planet candidates.]
MARVELS Doppler Instrument principle: Dispersed Fixed-delay Interferometry (DFDI)

Doppler shift: $\Delta V \propto \Delta \Phi$ (phase shift)
DFDI principle

Credits: Julian van Eyken
Second Generation RV instrument: EXPERT at Kitt Peak 2.1m telescope in 2009, motivated by MARVELS follow-ups

Temperature controlled: ~10mK over ~1 year
Pressure controlled: 1mpsi over ~1 year
LiJET Commissioning at the LiJiang 2.4m in Feb. 2011

LiJET UF team

LiJET chamber

Control System

LiJET telescope interface
Current Instrument Performance and Network Status

- EXPERT has its science operation since June 2010
- LiJET (EXPERT clone) was commissioned at the LiJiang 2.4m telescope in Feb. 2011 and completed telescope trial observations by January 2012.
- Working on data pipeline to reach a long term RV precision of 1-2 m/s
- Working on low mass planet survey simulation to come up with a survey plan, strategy, and cadence

Calibration
RMS=0.99 m/s

Sky measurements
RMS=2.8 m/s
New Era of Habitable Planet Searches

Gl581: M3V, 22 light year (~7 pc)

Gl581d (~7 M⊕, P = 66.8 days)

Mayor et al. 2009

KEPLER-22 SYSTEM

Kepler-22 (G5V, V=11.5, 180pc), Kepler-22b (P=289.9 days, 0.85 AU, 2.4 R⊕)

Borucki et al. 2012

EO 3.6m at La Silla and HARPS
Habitable Zones among M & K Dwarfs and Doppler Sensitivities

- RV precision $\leq \sim 3 \text{ m/s}$ required to detect habitable super-Earths around M4V-M9V dwarfs
- RV precision $\leq \sim 1 \text{ m/s}$ required to probe habitable super-Earths around K0V-M4V dwarfs
• High precision and high resolution optical spectrographs are needed for habitable planet surveys around K0-M4V dwarfs
• High precision and high resolution near IR spectrographs are needed for habitable planet surveys around M4V-M9V dwarfs
FIRST IR Doppler Instrument Development

FIRST Chamber and Optical Bench

• R=68K at 1.4-1.8 μm and R=56K at 0.8-1.35 μm, overall detection efficiency ~7%
• Operated in a vacuum chamber (<0.01 torr for 1 month) at 193K for the bench and 77K for a H2RG array and temperature controlled to within ~4 mK over a month
• A silicon immersion grating (1.4-1.8 μm) and a R4 echelle (0.8-1.35 μm) with a mirror image slicer
• Compact design (0.5x1.0x0.4m dimension) to keep the total cost within $1.5M

AST 2m Robotic Telescope at Fairborn Observatory
FIRST Spectral Format and Engineering Data in November 2012

Image quality and throughput meet requirements

Remaining major tasks before commissioning late this spring:
• Install the image slicer
• Integrate the H2RG with the instrument
• Cryogenic cooling and vacuum testing
• Acceptance test
FIRST at Fairborn Observatory to Hunt for Habitable super-Earths around 200 J<10 Late M Dwarfs in 2013-2017

Simulated Doppler Precision

- Baseline with 30 min exposures
- Pessimistic case w 30 min exposures

HARPS M dwarf sensitivity (Bonfils et al. 2011)

FIRST Exploration Space

• High cadence and queue schedule with the AST 2m robotic telescope offers the great flexibility for hunting for super-Earths
• Expect to detect ~30 exoplanets, including 10 super-Earths, within 100 day periods
EXPERT-III for Extremely High Precision RV Measurements at the KPNO 2.1m Telescope

Thermal enclosure, vacuum chamber and optical bench

- $R \approx 100,000$ & $50,000$ at $3800-9000\text{Å}$
- an R4 echelle with 1-4 fiber image slicer to reach $R=100K$
- $\sim 8\%$ total detection efficiency
- Vacuum operation (0.01 torr over 1 month and high precision temperature control ($\sim 2\text{ mK over one month}$)
- $\sim 0.4 \text{ m/s}$ photon limiting precision in 15 min for a $V=8$ solar type star
- Total construction cost within $1M$

Major remaining tasks: Vacuum system refining, System optimization & Acceptance test
Lab First light R=100K Sky Spectrum Taken with EXPERT-III

Order 161, 0.38 μm

Order 68, 0.90 μm

ThAr emission spectrum

2x2 40 μm fiber bundle
Lab First Light R=50K Sky Spectrum

Order 161, 0.38 μm

Order 68, 0.90 μm
Reduced R=100K Solar Spectrum with EXPERT-III

Solar Spectrum Taken with EXPERT-III

Wavelength (Å)

Intensity

R^100,000

Wavelength (Å)

Simulated Solar Spectrum

Intensity

R=120,000
EXPERT-III Doppler and Survey Sensitivity

Survey Sensitivity for low mass habitable planets

Photon limited Doppler Precision at S/N =100 at 5500 Å

Baseline performance

Pessimistic Performance

Predicted overall RV measurement errors
Main Science Objectives:

• Search >200 FGK dwarfs with V<8 for low mass planets, including habitable rocky planets with a few Earth masses

• Follow up MARVELS and Kepler planet candidates
Summary

• Three generation high precision RV instrument and technologies have been developed at UF

 ❑ Dispersed fixed-delay interferometry (DFDI) with R~5-20K has multiplicity advantage: ~9 times speed gain over high resolution echelle spectrometer to obtain multi-object moderate high precision RV measurements for a fixed detector size

 ❑ High resolution echelle spectrograph has ~2 times precision advantage over the DFDI instrument for a fixed wavelength coverage

• The UF 3rd generation high resolution IR and optical spectrographs are being tested and will be commissioned late this spring:

 ❑ FIRST silicon immersion grating spectrometer in vacuum and with temperature control will be used for a survey of ~200 nearby M dwarfs for habitable super-Earths in 2013-2017

 ❑ EXPERT-III high resolution optical spectrograph in vacuum and with temperature control will be used for habitable super-Earth searches around ~200 early M and K dwarfs, SDSS-III MARVELS and Kepler candidate follow-ups

• Future global network high precision RV instruments require compact, low cost, robust and robotic operation: the DFDI instrument is an attractive option

Acknowledgement: UF RV technology development have been supported by DoD, NSF, W.M. Keck foundation, Dharma Endowment Foundation, SDSS-III, NASA, UCF-UF SRI and UF