The Sol-Gel Process K. Lisa Brodhacker Lander University

NaCH SO

2Na 201

Introduction to Sol-Gel

Sol-Gel Process Steps

Gel Glass Process Sequence

Sol-Gel Process: The Chemistry

The Three Primary Reactions in Silica Gel Formation via the Alkoxide Technique

Once silanol groups form, they can condense through two different reactions to form connective silicon-oxygensilicon bridges

Functionality Determines Properties

- Bifunctional produces linear or ring structures
- Trifunctional produces crosslinking
- Tetrafunctional produces crosslinking

Factors Affecting Chemistry

- H₂O/Si Molar Ratios
- Temperature and Time
- pH
- Catalyst

 It is possible to vary the structure and properties of the network by controlling these factors.

pH Affects Chemistry

Sol-Gel Process: Gelation

- When the nanoparticles reach a critical size they stop growing and begin to agglomerate with other nanoparticles.
- When enough of the nanoparticles join together that a continuous network spans the liquid solution, a gel has formed.

Sol-Gel Process: Gelation

- Gelation Time more viscous system; time dependent on pH, temperature, R groups etc.
- Viscosity of the System related to size of particles, pH, solvent, etc
 Acid-catalyzed
 - yield primarily linear or randomly branched polymer
 - Base-catalyzed
 - yield highly branched clusters

Sol-Gel Process: Aging

 Polycondensation – reactions continue to increase network

 Syneresis – spontaneous shrinkage; continues until gel is a solid mass

 Coarsening – small particles grow initially and act as "nutrients" for bigger crystals

Sol-Gel Process: Drying

- Stage 1 Constant rate period
 - Decrease in volume of gel is equal to the liquid lost
- Stage 2 Critical point
 - Network strength is increased due to greater packing
- Stage 3 Falling rate period
 Pores have substantially emptied

Advantages and Disadvantages Silica Oxides

- Advantages:
 - Straightforward chemistry
 - Easy reactions (water)

- Disadvantages:
 - Somewhat hazardous
 - Expensive

Sodium Silicate

The Two Primary Reactions in Silica Gel Formation via the Waterglass Technique

Once silanol groups form, they can condense to form connective silicon-oxygensilicon bridges

Advantages and Disadvantages Sodium Silicate

- Advantages:
 - Less expensive
- Disadvantages:
 - Sodium silicate molecules do not hydrolyze and condense together when placed in water
 - Resulting gels are fragile and require purification

What Now?

- Sodium Silicate is readily available
- Nissan Chemicals
 - Snowtex
 - Suncolloid
- Aluminum oxide
- Epoxy

Organically Modified Silicate Films